Write a Blog >>
Mon 14 - Fri 18 November 2022 Singapore

There is often a scarcity of training data for machine learning (ML) classification and regression models in industrial production, especially for time-consuming or sparsely run manufacturing processes. Traditionally, a majority of the limited ground-truth data is used for training, while a handful of samples are left for testing. In that case, the number of test samples is inadequate to properly evaluate the robustness of the ML models under test (i.e., the system under test) for classification and regression. Furthermore, the output of these ML models may be inaccurate or even fail if the input data differ from the expected. This is the case for ML models used in the Electroslag Remelting (ESR) process in the refined steel industry to predict the pressure in a vacuum chamber. A vacuum pumping event that occurs once a workday generates a few hundred samples in a year of pumping for training and testing. In the absence of adequate training and test samples, this paper first presents a method to generate a fresh set of augmented samples based on vacuum pumping principles. Based on the generated augmented samples, three test scenarios and one test oracle are presented to assess the robustness of an ML model used for production on an industrial scale. Experiments are conducted with real industrial production data obtained from Uddeholms AB steel company. The evaluations indicate that Ensemble and Neural Network are the most robust when trained on augmented data using the proposed testing strategy. The evaluation also demonstrates the proposed method's effectiveness in checking and improving ML algorithms' robustness in such situations. The work improves software testing's state-of-the-art robustness testing in similar settings. Finally, the paper presents an MLOps implementation of the proposed approach for real-time ML model prediction and action on the edge node and automated continuous delivery of ML software from the cloud.